INTERGOVERNMENTAL PANEL ON Climate Change CLIMATE CHANGE 2014 Impacts, Adaptation, and Vulnerability Summary for Policymakers WORKING GROUP II CONTRIBUTION TO THE FIFTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE # Summary for Policymakers #### **Drafting Authors:** Christopher B. Field (USA), Vicente R. Barros (Argentina), Michael D. Mastrandrea (USA), Katharine J. Mach (USA), Mohamed A.-K. Abdrabo (Egypt), W. Neil Adger (UK), Yury A. Anokhin (Russian Federation), Oleg A. Anisimov (Russian Federation), Douglas J. Arent (USA), Jonathon Barnett (Australia), Virginia R. Burkett (USA), Rongshuo Cai (China), Monalisa Chatterjee (USA/India), Stewart J. Cohen (Canada), Wolfgang Cramer (Germany/France), Purnamita Dasgupta (India), Debra J. Davidson (Canada), Fatima Denton (Gambia), Petra Döll (Germany), Kirstin Dow (USA), Yasuaki Hijioka (Japan), Ove Hoegh-Guldberg (Australia), Richard G. Jones (UK), Roger N. Jones (Australia), Roger L. Kitching (Australia), R. Sari Kovats (UK), Joan Nymand Larsen (Iceland), Erda Lin (China), David B. Lobell (USA), Iñigo J. Losada (Spain), Graciela O. Magrin (Argentina), José A. Marengo (Brazil), Anil Markandya (Spain), Bruce A. McCarl (USA), Roger F. McLean (Australia), Linda O. Mearns (USA), Guy F. Midgley (South Africa), Nobuo Mimura (Japan), John F. Morton (UK), Isabelle Niang (Senegal), Ian R. Noble (Australia), Leonard A. Nurse (Barbados), Karen L. O'Brien (Norway), Taikan Oki (Japan), Lennart Olsson (Sweden), Michael Oppenheimer (USA), Jonathan T. Overpeck (USA), Joy J. Pereira (Malaysia), Elvira S. Poloczanska (Australia), John R. Porter (Denmark), Hans-O. Pörtner (Germany), Michael J. Prather (USA), Roger S. Pulwarty (USA), Andy Reisinger (New Zealand), Aromar Revi (India), Patricia Romero-Lankao (Mexico), Oliver C. Ruppel (Namibia), David E. Satterthwaite (UK), Daniela N. Schmidt (UK), Josef Settele (Germany), Kirk R. Smith (USA), Dáithí A. Stone (Canada/South Africa/USA), Avelino G. Suarez (Cuba), Petra Tschakert (USA), Riccardo Valentini (Italy), Alicia Villamizar (Venezuela), Rachel Warren (UK), Thomas J. Wilbanks (USA), Poh Poh Wong (Singapore), Alistair Woodward (New Zealand), Gary W. Yohe (USA) #### This Summary for Policymakers should be cited as: IPCC, 2014: Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Billir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32. ## **Contents** | As: | sessing and Managing the Risks of Climate Change | | |-----|---------------------------------------------------------------------------------------|------------| | | Background Box SPM.1. Context for the Assessment | 4 | | | Background Box SPM.2. Terms Central for Understanding the Summary | 5 | | | Background Box SPM.3. Communication of the Degree of Certainty in Assessment Findings | 6 | | A. | Observed Impacts, Vulnerability, and Adaptation in a Complex and Changing World | 4 | | | A-1. Observed Impacts, Vulnerability, and Exposure | 4 | | | A-2. Adaptation Experience | | | | A-3. The Decision-making Context | 9 | | B: | Future Risks and Opportunities for Adaptation | 11 | | | B-1. Key Risks across Sectors and Regions | | | | Assessment Box SPM.1. Human Interference with the Climate System | | | | B-2. Sectoral Risks and Potential for Adaptation | | | | B-3. Regional Key Risks and Potential for Adaptation | | | | Assessment Box SPM.2. Regional Key Risks | | | C: | Managing Future Risks and Building Resilience | 25 | | | C-1. Principles for Effective Adaptation | | | | C-2. Climate-resilient Pathways and Transformation | | | Sup | plementary Material | 3 ህ | #### ASSESSING AND MANAGING THE RISKS OF CLIMATE CHANGE Human interference with the climate system is occurring,¹ and climate change poses risks for human and natural systems (Figure SPM.1). The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC's Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change. It considers how impacts and risks related to climate change can be reduced and managed through adaptation and mitigation. The report assesses needs, options, opportunities, constraints, resilience, limits, and other aspects associated with adaptation. Climate change involves complex interactions and changing likelihoods of diverse impacts. A focus on risk, which is new in this report, supports decision making in the context of climate change and complements other elements of the report. People and societies may perceive or rank risks and potential benefits differently, given diverse values and goals. Compared to past WGII reports, the WGII AR5 assesses a substantially larger knowledge base of relevant scientific, technical, and socioeconomic literature. Increased literature has facilitated comprehensive assessment across a broader set of topics and sectors, with expanded coverage of human systems, adaptation, and the ocean. See Background Box SPM.1.² Section A of this summary characterizes observed impacts, vulnerability and exposure, and adaptive responses to date. Section B examines future risks and potential benefits. Section C considers principles for effective adaptation and the broader interactions among adaptation, mitigation, Figure SPM.1 | Illustration of the core concepts of the WGII AR5. Risk of climate-related impacts results from the interaction of climate-related hazards (including hazardous events and trends) with the vulnerability and exposure of human and natural systems. Changes in both the climate system (left) and socioeconomic processes including adaptation and mitigation (right) are drivers of hazards, exposure, and vulnerability. [19.2, Figure 19-1] A key finding of the WGI AR5 is, "It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century." [WGI AR5 SPM Section D.3, 2.2, 6.3, 10.3-6, 10.9] ^{1.1,} Figure 1-1 ## Background Box SPM.1 | Context for the Assessment For the past 2 decades, IPCC's Working Group II has developed assessments of climate-change impacts, adaptation, and vulnerability. The WGII AR5 builds from the WGII contribution to the IPCC's Fourth Assessment Report (WGII AR4), published in 2007, and the Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), published in 2012. It follows the Working Group I contribution to the AR5 (WGI AR5).³ The number of scientific publications available for assessing climate-change impacts, adaptation, and vulnerability more than doubled between 2005 and 2010, with especially rapid increases in publications related to adaptation. Authorship of climate-change publications from developing countries has increased, although it still represents a small fraction of the total.⁴ The WGII AR5 is presented in two parts (Part A. Global and Sectoral Aspects, and Part B: Regional Aspects), reflecting the expanded literature basis and multidisciplinary approach, increased focus on societal impacts and responses, and continued regionally comprehensive coverage. and sustainable development. Background Box SPM.2 defines central concepts, and Background Box SPM.3 introduces terms used to convey the degree of certainty in key findings. Chapter references in brackets and in footnotes indicate support for findings, figures, and tables. #### A: OBSERVED IMPACTS, VULNERABILITY, AND ADAPTATION IN A COMPLEX AND CHANGING WORLD #### A-1. Observed Impacts, Vulnerability, and Exposure In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans. Evidence of climate-change impacts is strongest and most comprehensive for natural systems. Some impacts on human systems have also been attributed⁵ to climate change, with a major or minor contribution of climate change distinguishable from other influences. See Figure SPM.2. Attribution of observed impacts in the WGII AR5 generally links responses of natural and human systems to observed climate change, regardless of its cause.⁶ In many regions, changing precipitation or melting snow and ice are altering hydrological systems, affecting water resources in terms of quantity and quality (medium confidence). Glaciers continue to shrink almost worldwide due to climate change (high confidence), affecting runoff and water resources downstream (medium confidence). Climate change is causing permafrost warming and thawing in high-latitude regions and in high-elevation regions (high confidence). Many terrestrial, freshwater, and marine species have shifted their geographic ranges, seasonal activities, migration patterns, abundances, and species interactions in response to ongoing climate change (high confidence). See Figure SPM.2B. While only a few recent species extinctions have been attributed as yet to climate change (high confidence), natural global climate change at rates slower than current anthropogenic climate change caused significant ecosystem shifts and species extinctions during the past millions of years (high confidence). Based on many studies covering a wide range of regions and crops, negative impacts of climate change on crop yields have been more common than positive impacts (high confidence). The smaller number of studies showing positive impacts relate mainly to ³ 1.2-3 ^{4 1.1,} Figure 1-1 The term attribution is used differently in WGI and WGII. Attribution in WGII considers the links between impacts on natural and human systems and observed climate change, regardless of its cause. By comparison, attribution in WGI quantifies the links between observed climate change and human activity, as well as other external climate drivets. 18.1, 18.3-6 ^{7 3.2, 4.3, 18.3, 18.5, 24.4, 26.2, 28.2,} Tables 3-1 and 25-1, Figures 18-2 and 26-1 ^{8 4.2-4, 5.3-4, 6.1, 6.3-4, 18.3, 18.5, 22.3, 24.4, 25.6, 28.2, 30.4-5,} Boxes 4-2, 4-3, 25-3, CC-CR, and CC-MB ## Background Box SPM.2 | Terms Central for Understanding the Summary® Climate change: Climate change refers to a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer, Climate change may be due to natural internal processes or external forcings such as modulations of the solar cycles, volcanic eruptions, and persistent anthropogenic changes in the composition of the atmosphere or in land use. Note that the Framework Convention on Climate Change (UNFCCC), in its Article 1, defines climate change as: "a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods." The UNFCCC thus makes a distinction between climate change attributable to human activities altering the atmospheric composition, and climate variability attributable to natural causes. **Hazard**: The potential occurrence of a natural or human-induced physical event or trend or physical impact that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, ecosystems, and environmental resources. In this report, the term *hazard* usually refers to climate-related physical events or trends or their physical impacts. Exposure: The presence of people, livelihoods, species or ecosystems, environmental functions, services, and resources, infrastructure, or economic, social, or cultural assets in places and settings that could be adversely affected. **Vulnerability.** The propensity or predisposition to be adversely affected. Vulnerability encompasses a variety of concepts and elements including sensitivity or susceptibility to harm and lack of capacity to cope and adapt. **Impacts**: Effects on natural and human systems. In this report, the term *impacts* is used primarily to refer to the effects on natural and human systems of extreme weather and climate events and of climate change. Impacts generally refer to effects on lives, livelihoods, health, ecosystems, economies, societies, cultures, services, and infrastructure due to the interaction of climate changes or hazardous climate events occurring within a specific time period and the vulnerability of an exposed society or system. Impacts are also referred to as *consequences* and *outcomes*. The impacts of climate change on geophysical systems, including floods, droughts, and sea level rise, are a subset of impacts called physical impacts. Risk: The potential for consequences where something of value is at stake and where the outcome is uncertain, recognizing the diversity of values. Risk is often represented as probability of occurrence of hazardous events or trends multiplied by the impacts if these events or trends occur. Risk results from the interaction of vulnerability, exposure, and hazard (see Figure SPM.1). In this report, the term *risk* is used primarily to refer to the risks of climate-change impacts. Adaptation: The process of adjustment to actual or expected climate and its effects. In human systems, adaptation seeks to moderate or avoid harm or exploit beneficial opportunities. In some natural systems, human intervention may facilitate adjustment to expected climate and its effects. **Transformation**: A change in the fundamental attributes of natural and human systems. Within this summary, transformation could reflect strengthened, altered, or aligned paradigms, goals, or values towards promoting adaptation for sustainable development, including poverty reduction. **Resilience**: The capacity of social, economic, and environmental systems to cope with a hazardous event or trend or disturbance, responding or reorganizing in ways that maintain their essential function, identity, and structure, while also maintaining the capacity for adaptation, learning, and transformation. high-latitude regions, though it is not yet clear whether the balance of impacts has been negative or positive in these regions (high confidence). Climate change has negatively affected wheat and maize yields for many regions and in the global aggregate (medium confidence). Effects on rice and soybean yield have been smaller in major production regions and globally, with a median change of zero across all available data, which are fewer for soy compared to the other crops. Observed impacts relate mainly to production aspects of food security rather than access The WGII AR5 glossary defines many terms used across chapters of the report. Reflecting progress in science, some definitions differ in breadth and focus from the definitions used in the AR4 and other IPCC reports. ### Background Box SPM.3 | Communication of the Degree of Certainty in Assessment Findings¹⁰ The degree of certainty in each key finding of the assessment is based on the type, amount, quality, and consistency of evidence (e.g., data, mechanistic understanding, theory, models, expert judgment) and the degree of agreement. The summary terms to describe evidence are: *limited*, *medium*, or *robust*; and agreement: *low*, *medium*, or *high*. Confidence in the validity of a finding synthesizes the evaluation of evidence and agreement. Levels of confidence include five qualifiers: very low, low, medium, high, and very high. The likelihood, or probability, of some well-defined outcome having occurred or occurring in the future can be described quantitatively through the following terms: *virtually certain*, 99–100% probability; *extremely likely*, 95–100%, *very likely*, 90–100%; *likely*, 66–100%; *more likely than not*, >50–100%; *about as likely as not*, 33–66%; *unlikely*, 0–33%; *very unlikely*, 0–10%; *extremely unlikely*, 0–5%; and *exceptionally unlikely*, 0–1%. Unless otherwise indicated, findings assigned a likelihood term are associated with *high* or *very high confidence*. Where appropriate, findings are also formulated as statements of fact without using uncertainty qualifiers. Within paragraphs of this summary, the confidence, evidence, and agreement terms given for a bold key finding apply to subsequent statements in the paragraph, unless additional terms are provided. or other components of food security. See Figure SPM.2C. Since AR4, several periods of rapid food and cereal price increases following climate extremes in key producing regions indicate a sensitivity of current markets to climate extremes among other factors (medium confidence).¹¹ At present the worldwide burden of human ill-health from climate change is relatively small compared with effects of other stressors and is not well quantified. However, there has been increased heat-related mortality and decreased cold-related mortality in some regions as a result of warming (medium confidence). Local changes in temperature and rainfall have altered the distribution of some water-borne illnesses and disease vectors (medium confidence).¹² Differences in vulnerability and exposure arise from non-climatic factors and from multidimensional inequalities often produced by uneven development processes (very high confidence). These differences shape differential risks from climate change. See Figure SPM.1. People who are socially, economically, culturally, politically, institutionally, or otherwise marginalized are especially vulnerable to climate change and also to some adaptation and mitigation responses (medium evidence, high agreement). This heightened vulnerability is rarely due to a single cause. Rather, it is the product of intersecting social processes that result in inequalities in socioeconomic status and income, as well as in exposure. Such social processes include, for example, discrimination on the basis of gender, class, ethnicity, age, and (dis)ability.¹³ impacts from recent climate-related extremes, such as heat waves, droughts, floods, cyclones, and wildfires, reveal significant vulnerability and exposure of some ecosystems and many human systems to current climate variability (very high confidence). Impacts of such climate-related extremes include alteration of ecosystems, disruption of food production and water supply, damage to infrastructure and settlements, morbidity and mortality, and consequences for mental health and human well-being. For countries at all levels of development, these impacts are consistent with a significant lack of preparedness for current climate variability in some sectors.¹⁴ Climate-related hazards exacerbate other stressors, often with negative outcomes for livelihoods, especially for people living in poverty (high confidence). Climate-related hazards affect poor people's lives directly through impacts on livelihoods, reductions in crop ^{10 1.1,} Box 1-1 ¹¹ 7.2, 18.4, 22.3, 26.5, Figures 7-2, 7-3, and 7-7 ^{12 11.4-6, 18.4, 25.8} ^{13 8.1-2, 9.3-4, 10.9, 11.1, 11.3-5, 12.2-5, 13.1-3, 14.1-3, 18.4, 19.6, 23.5, 25.8, 26.6, 26.8, 28.4,} Box CC-GC ^{14 3.2, 4.2-3, 8.1, 9.3, 10.7, 11.3, 11.7, 13.2, 14.1, 18.6, 22.3, 25.6-8, 26.6-7, 30.5,} Tables 18-3 and 23-1, Figure 26-2, Boxes 4-3, 4-4, 25-5, 25-6, 25-8, and CC-CR Figure SPM.2 | Widespread impacts in a changing world. (A) Global patterns of impacts in recent decades attributed to climate change, based on studies since the AR4. Impacts are shown at a range of geographic scales. Symbols indicate categories of attributed impacts, the relative contribution of climate change (major or minor) to the observed impact, and confidence in attribution. See supplementary Table SPM.A1 for descriptions of the impacts. (B) Average rates of change in distribution (km per decade) for marine taxonomic groups based on observations over 1900–2010. Positive distribution changes are consistent with warming (moving into previously cooler waters, generally poleward). The number of responses analyzed is given within parentheses for each category. (C) Summary of estimated impacts of observed climate changes on yields over 1960–2013 for four major crops in temperate and tropical regions, with the number of data points analyzed given within parentheses for each category. [Figures 7-2, 18-3, and MB-2] yields, or destruction of homes and indirectly through, for example, increased food prices and food insecurity. Observed positive effects for poor and marginalized people, which are limited and often indirect, include examples such as diversification of social networks and of agricultural practices.¹⁵ Violent conflict increases vulnerability to climate change (medium evidence, high agreement). Large-scale violent conflict harms assets that facilitate adaptation, including infrastructure, institutions, natural resources, social capital, and livelihood opportunities. 16 #### A-2. Adaptation Experience Throughout history, people and societies have adjusted to and coped with climate, climate variability, and extremes, with varying degrees of success. This section focuses on adaptive human responses to observed and projected climate-change impacts, which can also address broader risk-reduction and development objectives. Adaptation is becoming embedded in some planning processes, with more limited implementation of responses (high confidence). Engineered and technological options are commonly implemented adaptive responses, often integrated within existing programs such as disaster risk management and water management. There is increasing recognition of the value of social, institutional, and ecosystem-based measures and of the extent of constraints to adaptation. Adaptation options adopted to date continue to emphasize incremental adjustments and cobenefits and are starting to emphasize flexibility and learning (medium evidence, medium agreement). Most assessments of adaptation have been restricted to impacts, vulnerability, and adaptation planning, with very few assessing the processes of implementation or the effects of adaptation actions (medium evidence, high agreement).¹⁷ Adaptation experience is accumulating across regions in the public and private sector and within communities (high confidence). Governments at various levels are starting to develop adaptation plans and policies and to integrate climate-change considerations into broader development plans. Examples of adaptation across regions include the following: - In Africa, most national governments are initiating governance systems for adaptation. Disaster risk management, adjustments in technologies and infrastructure, ecosystem-based approaches, basic public health measures, and livelihood diversification are reducing vulnerability, although efforts to date tend to be isolated.¹⁸ - In Europe, adaptation policy has been developed across all levels of government, with some adaptation planning integrated into coastal and water management, into environmental protection and land planning, and into disaster risk management.¹⁹ - In Asia, adaptation is being facilitated in some areas through mainstreaming climate adaptation action into subnational development planning, early warning systems, integrated water resources management, agroforestry, and coastal reforestation of mangroves.²⁰ - In Australasia, planning for sea level rise, and in southern Australia for reduced water availability, is becoming adopted widely. Planning for sea level rise has evolved considerably over the past 2 decades and shows a diversity of approaches, although its implementation remains piecemeal.²¹ - In North America, governments are engaging in incremental adaptation assessment and planning, particularly at the municipal level. Some proactive adaptation is occurring to protect longer-term investments in energy and public infrastructure.²² - In Central and South America, ecosystem-based adaptation including protected areas, conservation agreements, and community management of natural areas is occurring. Resilient crop varieties, climate forecasts, and integrated water resources management are being adopted within the agricultural sector in some areas.²³ ^{1 8.2-3, 9.3, 11.3, 13.1-3, 22.3, 24.4, 26.8} ¹⁶ 12.5, 19.2, 19.6 ^{17 4.4, 5.5, 6.4, 8.3, 9.4, 11.7, 14.1, 14.3-4, 15.2-5, 17.2-3, 21.3, 21.5, 22.4, 23.7, 25.4, 26.8-9, 30.6,} Boxes 25-1, 25-2, 25-9, and CC-EA ¹⁸ 22.4 ^{19 23.7,} Boxes 5-1 and 23-3 ^{20 24.4-6, 24.9} Box CC-TC ²¹ 25.4, 25.10, Table 25-2, Boxes 25-1, 25-2, and 25-9 ^{22 26.7-9} ²³ 27.3 - In the Arctic, some communities have begun to deploy adaptive co-management strategies and communications infrastructure, combining traditional and scientific knowledge.²⁴ - In small islands, which have diverse physical and human attributes, community-based adaptation has been shown to generate larger benefits when delivered in conjunction with other development activities.²⁵ - In the ocean, international cooperation and marine spatial planning are starting to facilitate adaptation to climate change, with constraints from challenges of spatial scale and governance issues.²⁶ #### A-3. The Decision-making Context Climate variability and extremes have long been important in many decision-making contexts. Climate-related risks are now evolving over time due to both climate change and development. This section builds from existing experience with decision making and risk management. It creates a foundation for understanding the report's assessment of future climate-related risks and potential responses. Responding to climate-related risks involves decision making in a changing world, with continuing uncertainty about the severity and timing of climate-change impacts and with limits to the effectiveness of adaptation (high confidence). Iterative risk management is a useful framework for decision making in complex situations characterized by large potential consequences, persistent uncertainties, long timeframes, potential for learning, and multiple climatic and non-climatic influences changing over time. See Figure SPM.3. Assessment of the widest possible range of potential impacts, including low-probability outcomes with large consequences, is central to understanding the benefits and trade-offs of alternative risk management actions. The complexity of adaptation actions across scales and contexts means that monitoring and learning are important components of effective adaptation.²⁷ Adaptation and mitigation choices in the near term will affect the risks of climate change throughout the 21st century (high confidence). Figure SPM.4 illustrates projected warming under a low-emission mitigation scenario and a high-emission scenario [Representative Concentration Pathways (RCPs) 2.6 and 8.5], along with observed temperature changes. The benefits of adaptation and mitigation occur over different but overlapping timeframes. Projected global temperature increase over the next few decades is similar across emission scenarios (Figure SPM.4B).²⁸ During this near-term period, risks will evolve as socioeconomic trends interact with the changing climate. Societal Figure SPM.3 | Climate-change adaptation as an iterative risk management process with multiple feedbacks. People and knowledge shape the process and its outcomes. [Figure 2-1] ²⁴ 28.2, 28.4 ²⁵ 29.3, 29.6, Table 29-3, Figure 29-1 ²⁶ 30.6 ²¹ 2.1-4, 3.6, 14.1-3, 15.2-4, 16.2-4, 17.1**-3**, 17.5, 20.6, 22.4, 25.4, Figure 1-5 ⁻ WGI AR5 11.3 Figure SPM.4 | Observed and projected changes in annual average surface temperature. This figure informs understanding of climate-related risks in the WGII AR5. It illustrates temperature change observed to date and projected warming under continued high emissions and under ambitious mitigation. #### Figure SPM.4 Technical Details (A) Map of observed annual average temperature change from 1901–2012, derived from a linear trend where sufficient data permit a robust estimate; other areas are white. Solid colors indicate areas where trends are significant at the 10% level. Diagonal lines indicate areas where trends are not significant. Observed data (range of grid-point values: −0.53 to 2.50°C over period) are from WGI AR5 Figures SPM.1 and 2.21. (B) Observed and projected future global annual average temperature relative to 1986–2005. Observed warming from 1850–1900 to 1986–2005 is 0.61°C (5–95% confidence interval: 0.55 to 0.67°C). Black lines show temperature estimates from three datasets. Blue and red lines and shading denote the ensemble mean and ±1.64 standard deviation range, based on CMIP5 simulations from 32 models for RCP2.6 and 39 models for RCP8.5. (C) CMIP5 multi-model mean projections of annual average temperature changes for 2081–2100 under RCP2.6 and 8.5, relative to 1986–2005. Solid colors indicate areas with very strong agreement, where the multi-model mean change is greater than twice the baseline variability (natural internal variability in 20-yr means) and ≥90% of models agree on sign of change. Colors with white dots indicate areas with strong agreement, where ≥66% of models show change greater than the baseline variability, but <66% agree on sign of change. Gray indicates areas with divergent changes, where ≥66% of models show change greater than the baseline variability, but <66% agree on sign of change. Colors with diagonal lines indicate areas with little or no change, where <66% of models show change greater than the baseline variability, although there may be significant change at shorter timescales such as seasons, months, or days. Analysis uses model data (range of grid-point values across RCP2.6 and 8.5: 0.06 to 11.71°C) from WGI AR5 Figure SPM.8, with full description of methods in Box CC-RC. See also Annex I of WGI AR5. [Boxes 21-2 and CC-RC; WGI AR5 2.4, Figures SPM.1, SPM.7, and 2.21] responses, particularly adaptations, will influence near-term outcomes. In the second half of the 21st century and beyond, global temperature increase diverges across emission scenarios (Figure SPM.4B and 4C).²⁹ For this longer-term period, near-term and longer-term adaptation and mitigation, as well as development pathways, will determine the risks of climate change.³⁰ Assessment of risks in the WGII AR5 relies on diverse forms of evidence. Expert judgment is used to integrate evidence into evaluations of risks. Forms of evidence include, for example, empirical observations, experimental results, process-based understanding, statistical approaches, and simulation and descriptive models. Future risks related to climate change vary substantially across plausible alternative development pathways, and the relative importance of development and climate change varies by sector, region, and time period (high confidence). Scenarios are useful tools for characterizing possible future socioeconomic pathways, climate change and its risks, and policy implications. Climate-model projections informing evaluations of risks in this report are generally based on the RCPs (Figure SPM.4), as well as the older IPCC Special Report on Emission Scenarios (SRES) scenarios.³¹ Uncertainties about future vulnerability, exposure, and responses of interlinked human and natural systems are large (high confidence). This motivates exploration of a wide range of socioeconomic futures in assessments of risks. Understanding future vulnerability, exposure, and response capacity of interlinked human and natural systems is challenging due to the number of interacting social, economic, and cultural factors, which have been incompletely considered to date. These factors include wealth and its distribution across society, demographics, migration, access to technology and information, employment patterns, the quality of adaptive responses, societal values, governance structures, and institutions to resolve conflicts. International dimensions such as trade and relations among states are also important for understanding the risks of climate change at regional scales.³² #### **B: FUTURE RISKS AND OPPORTUNITIES FOR ADAPTATION** This section presents future risks and more limited potential benefits across sectors and regions, over the next few decades and in the second half of the 21st century and beyond. It examines how they are affected by the magnitude and rate of climate change and by socioeconomic choices. It also assesses opportunities for reducing impacts and managing risks through adaptation and mitigation. #### **B-1. Key Risks across Sectors and Regions** Key risks are potentially severe impacts relevant to Article 2 of the United Nations Framework Convention on Climate Change, which refers to "dangerous anthropogenic interference with the climate system." Risks are considered key due to high hazard or high vulnerability of societies and systems exposed, or both. Identification of key risks was based on expert judgment using the following specific criteria: large magnitude, ²⁹ WGI AR5 12.4 and Table SPM.2 ^{30 2.5, 21.2-3, 21.5,} Box CC-RC ³¹ 1.1, 1.3, 2.2-3, 19.6, 20.2, 21.3, 21.5, 26.2, Box CC-RC; WGI AR5 Box SPM.1 ³² 11.3, 12.6, 21.3-5, 25.3-4, 25.11, 26.2 ## Assessment Box SPM.1 | Human Interference with the Climate System Human influence on the climate system is clear ³³ Yet determining whether such influence constitutes "dangerous anthropogenic interference" in the words of Article 2 of the UNFCCC involves both risk assessment and value judgments. This report assesses risks across contexts and through time, providing a basis for judgments about the level of climate change at which risks become dangerous. Five integrative reasons for concern (RFCs) provide a framework for summarizing key risks across sectors and regions. First identified in the IPCC Third Assessment Report, the RFCs illustrate the implications of warrning and of adaptation limits for people, economies, and ecosystems. They provide one starting point for evaluating dangerous anthropogenic interference with the climate system. Risks for each RFC, updated based on assessment of the literature and expert judgments, are presented below and in Assessment Box SPM.1 Figure 1. All temperatures below are given as global average temperature change relative to 1986–2005 ("recent").³⁶ - 1) Unique and threatened systems: Some unique and threatened systems, including ecosystems and cultures, are already at risk from climate change (high confidence). The number of such systems at risk of severe consequences is higher with additional warming of around 1°C. Many species and systems with limited adaptive capacity are subject to very high risks with additional warming of 2°C, particularly Arctic-sea-ice and coral-reef systems. - 2) Extreme weather events: Climate-change-related risks from extreme events, such as heat waves, extreme precipitation, and coastal flooding, are already moderate (high confidence) and high with 1°C additional warming (medium confidence). Risks associated with some types of extreme events (e.g., extreme heat) increase further at higher temperatures (high confidence). - 3) Distribution of impacts: Risks are unevenly distributed and are generally greater for disadvantaged people and communities in countries at all levels of development. Risks are already moderate because of regionally differentiated climate-change impacts on crop production in particular (medium to high confidence). Based on projected decreases in regional crop yields and water availability, risks of unevenly distributed impacts are high for additional warming above 2°C (medium confidence). - 4) Global aggregate impacts: Risks of global aggregate impacts are moderate for additional warming between 1–2°C, reflecting impacts to both Earth's biodiversity and the overall global economy (medium confidence). Extensive biodiversity loss with associated loss of ecosystem goods and services results in high risks around 3°C additional warming (high confidence). Aggregate economic damages accelerate with increasing temperature (limited evidence, high agreement), but few quantitative estimates have been completed for additional warming around 3°C or above. - 5) Large-scale singular events. With increasing warming, some physical systems or ecosystems may be at risk of abrupt and irreversible changes. Risks associated with such tipping points become moderate between 0–1°C additional warming, due to early warning signs that both warm-water coral reef and Arctic ecosystems are already experiencing irreversible regime shifts (medium confidence). Risks increase disproportionately as temperature increases between 1–2°C additional warming and become high above 3°C, due to the potential for a large and irreversible sea level rise from ice sheet loss. For sustained warming greater than some threshold, 35 near-complete loss of the Greenland ice sheet would occur over a millennium or more, contributing up to 7 m of global mean sea level rise. high probability, or irreversibility of impacts; timing of impacts; persistent vulnerability or exposure contributing to risks; or limited potential to reduce risks through adaptation or mitigation. Key risks are integrated into five complementary and overarching reasons for concern (RFCs) in Assessment Box SPM.1. The key risks that follow, all of which are identified with *high confidence*, span sectors and regions. Each of these key risks contributes to one or more RFCs.³⁶ ³⁴ WGI AR5 SPM, 2.2, 6.3, 10.3-6, 10.9 ³⁴ 18.6, 19.6; observed warming from 1850–1900 to 1986–2005 is 0.61°C (5–95% confidence interval: 0.55 to 0.67°C). [WGI ARS 2.4] ³⁵ Current estimates indicate that this threshold is greater than about 1°C (low confidence) but less than about 4°C (medium confidence) sustained global mean warming above preindustrial levels. [WGI AR5 SPM, 5.8, 13.4-5] ³⁶ 19.2-4, 19.6, Table 19-4, Boxes 19-2 and CC-KR - i) Risk of death, injury, ill-health, or disrupted livelihoods in low-lying coastal zones and small island developing states and other small islands, due to storm surges, coastal flooding, and sea level rise.³⁷ [RFC 1-5] - ii) Risk of severe ill-health and disrupted livelihoods for large urban populations due to inland flooding in some regions.³⁸ [RFC 2 and 3] - iii) Systemic risks due to extreme weather events leading to breakdown of infrastructure networks and critical services such as electricity, water supply, and health and emergency services.³⁹ [RFC 2-4] - iv) Risk of mortality and morbidity during periods of extreme heat, particularly for vulnerable urban populations and those working outdoors in urban or rural areas.⁴⁰ [RFC 2 and 3] - v) Risk of food insecurity and the breakdown of food systems linked to warming, drought, flooding, and precipitation variability and extremes, particularly for poorer populations in urban and rural settings.⁴¹ [RFC 2-4] - vi) Risk of loss of rural livelihoods and income due to insufficient access to drinking and irrigation water and reduced agricultural productivity, particularly for farmers and pastoralists with minimal capital in semi-arid regions.⁴² [RFC 2 and 3] - vii) Risk of loss of marine and coastal ecosystems, biodiversity, and the ecosystem goods, functions, and services they provide for coastal livelihoods, especially for fishing communities in the tropics and the Arctic.⁴³ [RFC 1, 2, and 4] - viii) Risk of loss of terrestrial and inland water ecosystems, biodiversity, and the ecosystem goods, functions, and services they provide for livelihoods.⁴⁴ [RFC 1, 3, and 4] Many key risks constitute particular challenges for the least developed countries and vulnerable communities, given their limited ability to cope. Increasing magnitudes of warming increase the likelihood of severe, pervasive, and irreversible impacts. Some risks of climate change are considerable at 1 or 2°C above preindustrial levels (as shown in Assessment Box SPM.1). Global climate change risks are high to very high with global mean temperature increase of 4°C or more above preindustrial levels in all reasons for concern (Assessment Box SPM.1), and include severe and widespread impacts on unique and threatened systems, substantial species extinction, large risks to global and regional food security, and the combination of high temperature and humidity compromising normal human activities, including growing food or working outdoors in some areas for parts of the year (high confidence). The precise levels of climate change sufficient to trigger tipping points (thresholds for abrupt and irreversible change) remain uncertain, but the risk associated with crossing multiple tipping points in the earth system or in interlinked human and natural systems increases with rising temperature (medium confidence). 45 The overall risks of climate change impacts can be reduced by limiting the rate and magnitude of climate change. Risks are reduced substantially under the assessed scenario with the lowest temperature projections (RCP2.6 – low emissions) compared to the highest temperature projections (RCP8.5 – high emissions), particularly in the second half of the 21st century (very high confidence). Reducing climate change can also reduce the scale of adaptation that might be required. Under all assessed scenarios for adaptation and mitigation, some risk from adverse impacts remains (very high confidence).⁴⁶ #### B-2. Sectoral Risks and Potential for Adaptation Climate change is projected to amplify existing climate-related risks and create new risks for natural and human systems. Some of these risks will be limited to a particular sector or region, and others will have cascading effects. To a lesser extent, climate change is also projected to have some potential benefits. #### Freshwater resources Freshwater-related risks of climate change increase significantly with increasing greenhouse gas concentrations (robust evidence, high agreement). The fraction of global population experiencing water scarcity and the fraction affected by major river floods increase with the level of warming in the 21st century.⁴⁷ Climate change over the 21st century is projected to reduce renewable surface water and groundwater resources significantly in most dry subtropical regions (robust evidence, high agreement), intensifying competition for water among sectors (limited evidence, medium agreement). In presently dry regions, drought frequency will likely increase by the end of the 21st century under RCP8.5 (medium confidence). In contrast, water resources are projected to increase at high latitudes (robust evidence, high agreement). Climate change is projected to reduce raw water quality and pose risks to drinking water quality even with conventional treatment, due to interacting factors: increased temperature; increased sediment, nutrient, and pollutant loadings from heavy rainfall; increased concentration of pollutants during droughts; and disruption of treatment facilities during floods (medium evidence, high agreement). Adaptive water management techniques, including scenario planning, learning-based approaches, and flexible and low-regret solutions, can help create resilience to uncertain hydrological changes and impacts due to climate change (limited evidence, high agreement). #### Terrestrial and freshwater ecosystems A large fraction of both terrestrial and freshwater species faces increased extinction risk under projected climate change during and beyond the 21st century, especially as climate change interacts with other stressors, such as habitat modification, over- ^{45 4.2-3, 11.8, 19.5, 19.7, 26.5,} Box CC-HS ⁴⁶ 3.4-5, 16.6, 17.2, 19.7, 20.3, 25.10, Tables 3-2, 8-3, and 8-6, Boxes 16-3 and 25-1 ⁴⁷ 3.4-5, 26.3, Table 3-2, Box 25-8 exploitation, pollution, and invasive species (high confidence). Extinction risk is increased under all RCP scenarios, with risk increasing with both magnitude and rate of climate change. Many species will be unable to track suitable climates under mid- and high-range rates of climate change (i.e., RCP4.5, 6.0, and 8.5) during the 21st century (medium confidence). Lower rates of change (i.e., RCP2.6) will pose fewer problems. See Figure SPM.5. Some species will adapt to new climates. Those that cannot adapt sufficiently fast will decrease in abundance or go extinct in part or all of their ranges. Management actions, such as maintenance of genetic diversity, assisted species migration and dispersal, manipulation of disturbance regimes (e.g., fires, floods), and reduction of other stressors, can reduce, but not eliminate, risks of impacts to terrestrial and freshwater ecosystems due to climate change, as well as increase the inherent capacity of ecosystems and their species to adapt to a changing climate (high confidence).⁴⁹ Within this century, magnitudes and rates of climate change associated with medium- to high-emission scenarios (RCP4.5, 6.0, and 8.5) pose high risk of abrupt and irreversible regional-scale change in the composition, structure, and function of terrestrial and freshwater ecosystems, including wetlands (medium confidence). Examples that could lead to substantial impact on climate are the boreal-tundra Arctic system (medium confidence) and the Amazon forest (low confidence). Carbon stored in the terrestrial biosphere (e.g., in peatlands, permafrost, and forests) is susceptible to loss to the atmosphere as a result of climate change, deforestation, and ecosystem degradation (high confidence). Increased tree mortality and associated forest dieback is projected to occur in many regions over the 21st century, due to increased temperatures and drought (medium confidence). Forest dieback poses risks for carbon storage, biodiversity, wood production, water quality, amenity, and economic activity.⁵⁰ Figure SPM.5 | Maximum speeds at which species can move across landscapes (based on observations and models; vertical axis on left), compared with speeds at which temperatures are projected to move across landscapes (climate velocities for temperature; vertical axis on right). Human interventions, such as transport or habitat fragmentation, can greatly increase or decrease speeds of movement. White boxes with black bars indicate ranges and medians of maximum movement speeds for trees, plants, mammals, plant-feeding insects (median not estimated), and freshwater mollusks. For RCP2.6, 4.5, 6.0, and 8.5 for 2050–2090, horizontal lines show climate velocity for the global-land-area average and for large flat regions. Species with maximum speeds below each line are expected to be unable to track warming in the absence of human intervention. [Figure 4-5] ⁴⁸ 3.2, 3.4-6, 22.3, 23.9, 25.5, 26.3, Table 3-2, Table 23-3, Boxes 25-2, CC-RF, and CC-WE; WGI AR5 12.4 ^{49 4.3-4, 25.6, 26.4,} Box CC-RF ⁵⁰ 4.2-3, Figure 4-8, Boxes 4-2, 4-3, and 4-4