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List of abbreviations 
COPD Chronic obstructive pulmonary disorder 

HR Hazard ratio 

IQR Interquartile range 

NO2 Nitrogen dioxide 

PM Particulate matter (particles) 

PM0.1 Particulate matter of diameter <0.1 µm 

PM2.5 Particulate matter of diameter <2.5 µm 

PM10 Particulate matter of diameter <10 µm 

OR Odds ratio 

PNC Particle number concentration 

RR Relative risk 

UFP Ultrafine particles 

WHO World Health Organization 
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Report requested by the City of Copenhagen 

Københavns Kommune, Sundheds- og Omsorgsforvaltningen  

April 2024 

1. Introduction 
It is well known that ambient air pollution in the form of particulate matter <2.5 µm (PM2.5) 

can cause adverse health effects such as cardiovascular and respiratory diseases, contributing 
to approximately four million deaths worldwide every year (1). Recently, there has been 

increasing research interest in ultrafine particles (UFP), which are the smallest fraction of 

particulate matter below 0.1 µm, or 100 nm, in diameter. They are small and light, and thus not 

well represented in the routinely monitored particle mass concentration, but better reflected as 
particle number concentrations. They also differ from larger particles in terms of their primary 

sources, which are traffic emissions in urban areas with some contributions from wood stoves, 

construction work and other combustion processes, and in their short lifespan in the air and 

large spatial and temporal variation. The health concerns related to UFP are caused by their 
increased toxicity related to their high surface reactivity and ability to carry large amounts of 

potentially toxic materials. Additionally, their small size allows them to enter deep into the 

lungs, blood stream, and be translocated to other organs including the brain and nervous system 
(2). 

Two systematic reviews on the health effects of UFP from 2013 and 2019 found insufficient 

numbers of studies and inconclusive results (2,3). While there was some evidence of an 

association between short-term UFP exposure and inflammatory and cardiovascular changes 
in the body from panel studies, evidence on mortality or the incidence or exacerbation of 

diseases was scarce. Since the last review, there has been a surge in studies on health effects of 

UFP, which is why an update of existing reviews is needed. 

Studies on the health effects of UFP can be divided into short- and long-term exposure studies. 
Short-term studies investigate whether changes in daily concentrations of UFP trigger hospital 

admissions or mortality within a few days of increased exposure. Long-term studies examine 

the association between UFP exposure over the course of several years and health outcomes. 

While short-term studies usually combine aggregated health data, such as total daily numbers 
of deaths in a city, with monitoring data from a single background station, studies on long-term 

exposure require finer-scale, address-level UFP concentrations in order to detect exposure 

contrasts between people. An increasing availability of fine-scale spatial UFP models has led 
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to an increase in the number of long-term UFP studies in recent years. However, exposure 

assessment remains a challenge in research on the health effects of both short- and long-term 
UFP exposure. As UFP are not regulated, they are not routinely monitored, and only few cities 

have monitoring data for extended time series. Moreover, non-standardized measurement 

equipment and the use of different cut-offs for particle size hamper the comparability of 

measurements from different locations. For particle size, especially the lower detection limit is 
crucial, as the smallest particles contribute most in terms of particle number concentration. In 

fact, particles below 100 nm generally account for 80-90% of the total particle number 

concentration (4). In line with this, the recent WHO Air Quality Guidelines include a good 

practice statement on UFP, suggesting a lower limit ≤10 nm with no restriction on the upper 
limit (5). 

Besides road traffic as a major source of UFP in urban areas, airports have received ongoing 

attention as major emitters of UFP with potential adverse health effects for airport employees 

and residents in the vicinity. A global modelling study estimated that aviation emissions are 
responsible for around 16,000 premature deaths globally every year (6). Numerous studies 

document elevated UFP concentrations in and around airports, and an increasing body of 

literature is available on the health effects of short-term or long-term exposure to airport-related 
UFP exposure, both in occupational, experimental, or population-based cohort studies. 

In the following chapters, we will provide an overview of the literature on the health effects of 

short-term, long-term, and airport-related UFP exposure. In doing so, we will summarize the 

findings of two previous reviews on the short- and long-term health effects of UFP (2,3), and 
add to these findings by reviewing studies that were published since the last review. For airport-

related UFP, we conducted a literature search of studies on exposure patterns, and studies on 

the short- and long-term health effects in occupational and general population settings. 

2. Health effects of short-term exposure 
In this chapter, we summarize studies on the association between short-term UFP exposure and 

morbidity (hospital admissions) and mortality. 

We conducted a literature search of epidemiological studies published between January 2017 

and September 2023. Additionally, we included studies from a previous review from 2019 that 

covered studies published in 2011-2017 (2) and a review from 2013 covering studies before 

2011 (3). For the current updated literature search, we followed the search strategy, inclusion 
and exclusion criteria of Ohlwein et al. 2019 (2), and searched the databases PubMed and 

LUDOK (the Swiss literature database on air pollution and health), using search terms related 
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to ambient  air pollution,  ultrafine  particles, health, epidemiology, and disease-related 

keywords, each operationalized with multiple  synonyms  and combined with “AND”/“OR”  
operators.  We  included only studies  on mortality or hospital  admissions, not  those  on sub-

clinical outcomes or biomarkers.   

We found 24 studies on mortality and 31 on hospital admissions associated with short-term 

UFP exposure. Among the mortality studies, 17 included all-cause natural (non-accidental) 
mortality, 17 at cardiovascular diseases and 15 at respiratory diseases as outcomes (Table 1). 

Additionally, some studies examined specific cardiovascular or respiratory diseases such as 

stroke, ischemic heart disease, coronary disease, or COPD. Among the studies on hospital 

admissions (including emergency room visits), 10 included cardiovascular, 12 included 
respiratory diseases, and among the specific diseases, there are studies on stroke, myocardial 

infarction, heart failure, asthma, COPD, and acute lower or upper respiratory infections. The 

majority of identified studies are from Europe and North America, with only few studies from 

Asia and one from South America (Table 1). 

2.1  Study designs  

Most studies on the health effects of short-term UFP exposure use time series methods (Table 

1), where regression models are applied to daily exposure and outcome data, adjusting for time 
trends and confounders such as the day of the week and meteorological variables (7). Some 

studies use a case-crossover design with conditional logistic regression, which compares the 

exposure on the day of an event to exposure levels on other days, typically the same weekdays 

within the same month and year, thus comparing each case with itself and reducing 
confounding effects of individuals’ characteristics (8). In both designs, results are usually 

presented as the increase (percentage, odds ratio [OR], or relative risk [RR]) in the daily 

number of deaths or hospital admissions related to an increase (often the interquartile range) in 

air pollution concentrations, with 95% confidence intervals (CI). Besides exposure 
concentrations on the same day as an event, short-term studies usually explore different lagged 

exposures to account for delayed health effects. These can be single lags up to several days 

before an event (e.g., ‘lag 1’, which is the concentration on the previous day) or moving 

averages of several preceding days’ concentrations (e.g., ‘lag 0-1’, which is the average of the 
day of an event and the previous day). In order to assess whether the observed associations 

with UFP are independent from other pollutants’ concentrations, many studies (but not all) 

apply two- or multi-pollutant models, which are adjusted for one or multiple co-pollutants. 

Commonly, this is done for PM2.5 and NO2, both of which are usually moderately correlated 
with UFP. 
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2.2 Exposure assessment 

For exposure assessment, most available studies use a central urban background measurement 
site to reflect day-to-day variations within a study area, typically a single city. While this limits 

information on spatial variation and local hotspots of UFP, the temporal variation in UFP in 

different urban locations is usually well reflected in the variation at a background site. Only 

one study to date has applied a model of daily UFP at a finer resolution. 

Another aspect of exposure assessment is the choice of particle size. There is large 

heterogeneity in size ranges investigated in available short-term studies, with some presenting 

results for a “stricter” definition of UFP below 100 nm diameter, and others using the whole 

particle number concentration without an upper limit as a proxy for UFP. In addition, in the 
absence of standard instruments for UFP measurements, there are differences in the lower cut-

off size for particles. While some instruments measure particles as small as 3 nm, others start 

counting particles at a diameter of 10 or 20 nm. This leads to a limited comparability of 

measurements from different instruments, as there is large uncertainty in measuring the 
smallest particles, which contribute most to total particle number concentration. In this review, 

we only considered studies that used a lower limit ≤20 nm and an upper limit ≥100 nm. The 

included studies used either UFP below 100 nm, and/or the total particle number concentration 
(Table 1). 

Table 1. Characteristics of short-term exposure studies. 

Characteristic Mortality (n) 

Total: 24 studies  

Hospital admissions (n) 

Total: 31 studies  

Outcome  
All-cause natural  17  0  

All cardiovascular  17  10  

Stroke  3  3  

MI  1  7  

IHD  2  2  
Coronary disease  2  1  

Heart failure  1  3  

Arrhythmia  1  2  

Cerebrovascular disease  1  1  

Cardiac arrest  0  1  
All respiratory  15  12  

Asthma  0  9  

COPD  3  3  

Lower/Upper respiratory infections  1  6  
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Region  

Europe  18  16  

North America  0  7  
Asia (all from China)  6  7  

South America  0  1  

Study design  

Time series  23  12  

Case-crossover  1  19  

Population  

General  22  23  

Elderly  2  3  

Children  0  5  

Exposure assessment  
Central  24  30  

Model  0  1  

Particle size  

<100 nm  16  22  

Total PNC  10  16  

 

2.3 Morbidity 

In their review covering studies until 2017, Ohlwein et al. 2019 found limited evidence on the 

association between short-term UFP exposure and hospital admissions (including emergency 
room visits), with seven studies available on cardiovascular diseases and six on respiratory 

diseases. For cardiovascular diseases, most studies found weak, positive associations, but were 

too heterogeneous to draw overall conclusions. While most studies on respiratory diseases 

found positive associations with at least one lagged (UFP concentrations on days before a 
hospital admission) exposure and respiratory diseases, these were robust in only one study (2). 

In our current, updated search including studies before and after 2017, until September 2023, 

we identified ten studies on hospital admissions for cardiovascular diseases and twelve for 
respiratory diseases. In addition, some studies focused on specific diseases such as asthma 

(n=10), myocardial infarction (n=7), heart failure (n=3), stroke (n=3), chronic obstructive 

pulmonary disease (COPD; n=3), respiratory infections (n=5), and other respiratory and 

cardiovascular diseases. 

For cardiovascular diseases, a multi-city study of Dresden and Augsburg (Germany), Prague 

(Czech Republic), Ljubljana (Slovenia), and Chernivtsi (Ukraine) found non-significant 

associations close to the null (9). Similarly, studies from Helsinki (Finland) (10), Prague 

(Czech Republic) (11), and two studies in London (UK) (12,13) did not find any associations. 
Positive, significant associations were found in New York State (0.3% [95% CI: 0.1%, 0.4%] 
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per 1601 pt/cm3 increase in UFP, lag 0-3 days) (14) and Beijing, China (7.2% [95% CI: 1.1%, 

13.7%] per 9040 pt/cm3, lag 0-10) (15), but neither study assessed whether these associations 
were independent from other pollutants. Two studies were conducted in Copenhagen using 

data from an urban background monitoring station. The first study included UFP data from 

2001-2004 and cardiovascular hospital admissions in the elderly (>65 years) and found no 

association with cardiovascular diseases (16). The second, more recent study with data from 
2002-2018, including all hospital admissions in adults (>30 years), found a significant 

association (OR: 1.02 [95% CI: 1.00, 1.04]) between 2887 pt/cm3 increases in two-day average 

UFP (lag 0-1) and cardiovascular hospital admissions (17) that became non-significant after 

adjustment for PM2.5 or NO2. Among the specific cardiovascular diseases, we found 
associations with ischemic stroke (18) hospital admissions in adults in Copenhagen. Others 

found positive associations with arrhythmia among elderly people in Helsinki (10), out-of-

hospital cardiac arrest in Helsinki (19), and particularly with different types of myocardial 

infarction in Augsburg (Germany) (20,21), Rochester (USA) (22), and Shanghai (China) 
(23,24). 

Respiratory diseases were positively, but not significantly associated with UFP in the 

Lanzinger et al. (2016) multi-city study (4.3% [95% CI: -0.9, 9.8] per 3675 pt/cm3, lag 0-5), 
and diminished after PM2.5 or NO2 adjustment. Positive associations were also found in studies 

from London (13) and Helsinki (10), both of which did not adjust for other pollutants. Another 

multi-city study combined data from Barcelona (Spain), Copenhagen, Helsinki (Finland), 

Rome (Italy), and Stockholm (Sweden) for 2001-2011, and found non-significant associations 
close to null (25). Similarly, no associations were detected in studies from Prague (Czech 

Republic) (11), and Beijing (China) (26). A study from Chile found strong associations 

between wood burning-related UFP and respiratory hospitalizations in people older than 65 

(15% [95% CI: 5, 25] per 4.73 pt/cm3, lag 5) (27). In Copenhagen, associations were non-
significant and close to the null in the analysis of elderly people (16), and positive in the more 

recent analysis for adults (OR: 1.04 [95% CI: 1.01, 1.07] per 2513 pt/cm3, lag 0-4) (17), but 

diminished after PM2.5 or NO2 adjustment. Among the specific respiratory diseases, we found 

associations with asthma (17) in adults in Copenhagen, and others found positive associations 
with pneumonia in elderly people in Helsinki (10). 

Some studies restricted their analyses to children and found stronger associations for 

respiratory diseases than in adults, such as in London (12). Children’s hospital admissions 

specifically for asthma were investigated in a few studies, with inconclusive results (16,28,29), 
and in a recent study from Copenhagen (currently under review), we found significant, positive 
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associations in school-aged children (5-14 years), independent from PM2.5 or NO2. Similar 

associations were also found in studies from Rochester (USA) (30) and Shanghai (China) 
(31,32). The latter two Chinese studies also found positive associations between UFP and 

children’s emergency department visits or outpatient visits due to bronchitis, upper respiratory 

infections, and pneumonia, robust to PM2.5 or NO2 adjustment. 

2.4 Mortality  
We identified 24 studies on short-term UFP exposure and mortality. The number of available 

studies has increased since the Ohlwein 2019 review, which found four studies on all-cause 

mortality, six on cardiovascular, and five on respiratory disease mortality, adding to eleven 

studies from the previous 2013 report, both with inconsistent findings. In our updated search, 
we found 17 studies on all-cause, 17 on cardiovascular, and 15 on respiratory mortality. 

Among the studies on all-cause mortality, most found non-significant associations close to the 

null, with large heterogeneity in the assessed lag days and particle sizes. Three large, multi-

city studies have pooled results from several European cities. Lanzinger et al. (2016b) included 
between one- and two-year-long time series from Dresden and Augsburg (Germany), Prague 

(Czech Republic), Ljubljana (Slovenia), and Chernivtsi (Ukraine) in combined analyses, and 

found no association with all-cause mortality (33). Similarly, Stafoggia et al. (2017) combined 
data from Helsinki (Finland), Stockholm (Sweden), Copenhagen (Denmark), Ruhr area 

(Germany), Rome (Italy), Barcelona (Spain), and Athens (Greece), all between 1999 and 2013. 

They found a weak increase of 0.35% (95% CI: -0.05%, 0.75%) in all-cause mortality per 

10,000 pt/cm3 increase in UFP five to seven days before death (lag 5-7), which disappeared in 
two-pollutant models (34). Another recent study examined associations of short-term UFP 

exposure and all-cause mortality in Barcelona (Spain), Helsinki (Finland), London (UK), and 

Zurich (Switzerland), 2009-2016, and found significant increases of 1.3% (95% CI: 0.07%, 

2.5%) per 4012 pt/cm3 increase in UFP lagged two days in Helsinki, robust to NO2 adjustment 
(PM2.5 was not assessed), but inconsistent associations in other cities and at other lags (35). 

Slightly stronger associations were found for primary source UFP in Barcelona (1.63% [95% 

CI: 0.74%, 2.52%] per 3277 pt/cm3 at lag 0), not adjusted for PM2.5 or NO2 (36). We have 

recently studied this association in Copenhagen, using daily data from an urban background 
station in 2002-2018, and found a suggestive association with an OR of 1.02 (95% CI: 1.00, 

1.04) with UFP concentrations on the same day per 3075 pt/cm3 increase, robust to PM2.5 or 

NO2 adjustment (17). Lastly, studies from Stockholm (37), the Ruhr area in Germany (38), 

three German cities (39), and London (12) found no or small and insignificant associations. 
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For cardiovascular mortality, similar to all-cause mortality, there is heterogeneity in study 

designs, and findings are inconclusive. In their multi-city studies, both Lanzinger et al. (2016b) 
and Stafoggia et al. (2017) found insignificant associations close to the null. Rivas et al. (2021) 

found a significant increase of 3.7% (95% CI: 0.17%, 7.4%) per 5601 pt/cm3 (lag 1) in 

Barcelona and 3.8% (95% CI: 0.31, 7.4) per 4735 pt/cm3 (lag 0) in Zurich, robust to NO2 

adjustment. Positive associations were also found in London (13), Beijing (40,41), and 
Germany (38), while other studies found non-significant associations close to the null 

(11,12,37). In our Copenhagen study, we did not find associations with cardiovascular 

mortality. Among the few studies that focused on specific cardiovascular diseases, there are 

indications for associations with ischemic heart disease mortality (41), cerebrovascular deaths 
(40), but not myocardial infarction (20). 

For respiratory mortality, some studies found stronger positive associations with short-term 

UFP exposure with wider confidence intervals, such as in Zurich (9.4% [95% CI: 1.0%, 17.9%] 

per 4735 pt/cm3, lag 1), robust to NO2 adjustment (35), Ruhr area in Germany (4.51% [95% 
CI: 0.37%, 8.81%] per 4900 pt/cm3, lag 6) (38), in the Lanzinger et al. multi-city study (9.9% 

[95% CI: -6.3%, 28.8%] per 2750 pt/cm3, lag 0-5), robust to NO2 and PM2.5 adjustment, in 

three German cities (4.46% [95% CI: 1.52%, 7.48%] per 3223 pt/cm3, lag 5-7) (39), robust to 
NO2 and PM2.5 adjustment, in Beijing (3.9% [95% CI: -7.3, 16.4%] per 13,000 pt/cm3, lag 0-

4) (42), robust to NO2 adjustment, and in London (2.3% [95% CI: -0.1%, 4.8%] per 10,166 

pt/cm3, lag 1) (13). Other studies found non-significant associations close to the null (11,12,34). 

In Copenhagen, we found positive associations with an OR of 1.04 (95% CI: 0.98, 1.11) per 
2513 pt/cm3 increase in five-day average UFP, robust to NO2 and PM2.5 adjustment. Among 

the specific respiratory diseases, we found positive associations with COPD mortality (17). 

2.5 Summary  

We summarized results from 24 mortality studies and 31 hospital admissions studies, mainly 
from Europe and North America. For hospital admissions, findings are inconclusive, but 

suggest associations between UFP and respiratory diseases, particularly among children, and 

associations with myocardial infarction. Similarly, for mortality, associations are more 

consistent for respiratory diseases than for all-cause mortality or cardiovascular diseases. 
Overall, evidence is still too limited to draw firm conclusions, which is partly related to the 

heterogeneity in study designs due to missing standards for UFP measurements. Moreover, 

there is limited and inconclusive evidence on whether the effects of UFP are independent from 

other pollutants. 
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3. Health effects of long-term exposure 
In this chapter, we summarize studies on the association between long-term UFP exposure and 

morbidity and mortality. We applied the same literature search strategy as described in Chapter 

2 and selected all cohort or case-control studies on long-term exposure (i.e. exposure windows 

of multiple months to years). Due to the low total number of studies, here, unlike for short-
term exposures, we also included sub-clinical and biomarker studies, in addition to mortality 

and incidence of clinical diseases.  

We identified 42 studies on long-term UFP health effects in total, which is a substantial 
increase since the Ohlwein review from 2017, which found six cohort and case-control studies, 

and the 2013 HEI review, which did not find any. The studies identified in the current review 

are mainly from Europe (n=23) and North America (n=15), with only two studies from Asia 

(both China) and none from other locations (Table 2). Most studies focused on morbidity (both 
clinical and sub-clinical outcomes), and only two on mortality.  

3.1 Study designs 

The majority of the long-term studies applied cohort study designs, and some case-control 

designs. Regression models are used to assess the association between an increase in 
individual-level UFP and health effects. Most studies adjust for individual- and neighborhood-

level confounders, such as demographic and socio-economic factors, and some adjust for 

additional lifestyle and behavioral factors. In addition, most studies apply two- or multi-

pollutant models, adjusting for other air pollutants. 

3.2 Exposure assessment 

The increase in long-term studies is related to an increase in the availability of spatial models 

of UFP, which provide fine-scale concentrations necessary for conducting cohort or case-
control studies. Compared to particle mass (PM2.5 and PM10), there are still very few models 

on UFP, owed to the limited availability of UFP monitoring data. In addition, UFP are 

characterized by their large spatial variation, with exposure contrasts varying greatly by just 

few meters distance to sources.  

Most of the studies identified in our search applied land-use regression models or hybrid 

models, and some applied other methods such as chemical transport models or mobile 

measurements. Several studies are based on models from Toronto (Canada) and the 

Netherlands (nationwide). Both models are based on mobile monitoring campaigns and land 
use regression methods, and reach moderate performance in external validation studies (43,44). 

In Denmark, the “DEHM/UBM/AirGIS” model estimates air pollution at address-level 
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combining information on the regional background, local background, local traffic composition 

and intensity, emission factors, meteorology and street and building configuration. The most 
recent model update includes address-level UFP concentrations since 1979 (45). While there 

was good correlation with monitoring station data, the model has not been validated by external 

measurements, and residential background levels might be overestimated. 

Table 2. Characteristics of long-term exposure studies. 

Characteristic Mortality (n) 

Total: 2 studies 

Morbidity (n) 

Total: 40 studies 

Outcome 

All-cause natural 2 0 

Cardiovascular   
All cardiovascular 2 2 

Diabetes 0 4 

Stroke 0 2 

MI 0 3 

Coronary disease 0 2 
Arterial stiffness 0 1 

Atherosclerosis 0 2 

Congenital defect 0 1 

Congestive heart failure 0 2 

Hypertension 0 1 
Respiratory   

All respiratory 2 0 

Asthma 0 4 

COPD 0 1 

Malignancies 
Prostate cancer 1 1 

Breast cancer 0 1 

  

Lung cancer 0 1 

Brain tumor 0 1 

Other cancer 0 1 
Sub-clinical/biomarkers 0 9 

Neuro-cognitive outcomes 0 7 

Perinatal outcomes 0 5 

  

Region 

Europe 1 23 
North America 1 15 

Asia (all from China) 0 2 

  

Study design 

Cohort 2 36 

Case-control 0 4 

  

Population 
General 2 25 

  



 

12 
 

Children 0 3 

Pregnant women/mother-child 

pairs 

0 9 

Other selected population 0 3 
  

Exposure assessment 

Central monitoring 0 4 

Land-use regression model 1 19 

Hybrid model 0 6 
Other 1 11 

  

Particle size 

<100 nm 2 18 

Total PNC 0 12 

Accumulation mode 0 9 
Nucleation mode 0 1 

 

  

     

3.3 Morbidity 

The incidence of total cardiovascular diseases was positively associated with long-term UFP 
exposure in one out of two available studies. A Dutch cohort study of ~34,000 people found a 

hazard ratio (HR) of 1.18 (95% CI: 1.03, 1.34) per 10,000 pt/cm3 increase in address-level UFP 

at the year of study enrollment, adjusted for socio-demographic and lifestyle factors, which 

was robust to adjustment for PM2.5 and NO2 (46). A cohort study from the German Ruhr area 
used a model of accumulation mode particles, which are larger than particles in the ultrafine 

range (100-1000 nm), and found no associations between long-term UFP exposure and total 

cardiovascular diseases (47).  

Type 2 diabetes incidence was positively associated with increases in long-term UFP exposure 
in all four studies. A cohort study from Toronto found a HR of 1.06 (95% CI: 1.05, 1.08) per 

9948 pt/cm3 increase in one-year mean UFP (48). A German cohort study found positive 

associations between accumulation mode particles (100-1000 nm) and diabetes incidence (RR: 
1.29 [95% CI: 1.10, 1.52] per 494 pt/mL) (49). A Danish nationwide study using UFP estimates 

from the “DEHM/UBM/AirGIS” model found a HR of 1.05 (95% CI: 1.04, 1.06) per 4248 

pt/cm3 increase in five-year mean exposure among all persons living in Denmark for the period 

2005-2017, adjusting for individual- and area-level demographic and socioeconomic covariates 
(50). Lastly, there were indications of a positive association with gestational diabetes in 

Beijing, China, which used central monitoring to assign exposure during pregnancy (51). 

Among other specific cardiovascular diseases, positive, significant associations were found for 

stroke and larger (accumulation mode) particles in Germany (47), and stroke and UFP in 
Denmark (52). The Dutch study on cardiovascular outcomes found strong positive associations 
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for myocardial infarction and heart failure, but not coronary heart disease (46). Myocardial 

infarction and heart failure were also positively associated with long-term UFP exposure in 
Toronto, Canada (53). Likewise, a Danish nationwide cohort study using the same methods as 

described earlier and follow-up from 2005 to 2017 found a HR of 1.04 (95% CI: 1.03, 1.06) of 

myocardial infarction associated with each 4248 pt/cm3 increase in five-year mean residential 

UFP (54). Other studies found non-significant associations with coronary heart disease (47), 
congenital heart defects (55), arterial stiffness (56), and hypertensive disorders of pregnancy 

(57). Atherosclerosis was significantly associated with UFP in one study (58), but not in 

another (59).  

Concerning respiratory diseases, studies have examined COPD and asthma incidence. COPD 
was significantly associated with long-term UFP in a Canadian cohort study (HR: 1.06 [95% 

CI: 1.05, 1.09]), but diminished after NO2 adjustment, while asthma was not associated with 

UFP (60). Similarly, asthma was associated with long-term UFP in a Dutch cohort study of 

people younger than 20, but was no longer significant after NO2 or PM2.5 adjustment (61). 
Prenatal UFP exposure was strongly associated with asthma incidence in children in an analysis 

of 376 mother-child pairs in Boston, USA (OR: 4.28 [95% CI: 1.41, 15.7] per doubling of UFP 

exposure during pregnancy) (62), independent of NO2. This confirms a previous Canadian 
study with similar design, where second-trimester UFP exposure was linked to childhood 

asthma incidence up to age six in a sample of 160,641 singleton live births (HR: 1.05 [95% CI: 

1.01, 1.09] per 10,770 pt/cm3), adjusted for both NO2 and PM2.5 (63).  

Incidence of cancer was associated with long-term UFP exposure in three out of five studies. 
A Canadian (Toronto) cohort study assessed prenatal and childhood UFP exposure of children, 

who developed cancer before the age of 14, and found a positive association (HR: 1.13 [95% 

CI: 1.03, 1.22]) per 10,000 pt/cm3 increase in the mothers’ first trimester exposure, after 

adjusting for other pollutants and personal and neighborhood-level confounders (64). Two 
other Canadian studies from Montreal and Toronto focused on post-menopausal breast and 

lung cancer, but found no significant associations for UFP (60,65). For brain tumor incidence, 

positive associations (HR: 1.13 [95% CI: 1.03, 1.25] per 10,000 pt/cm3) were found with 

residential exposures in a cohort study from Montreal and Toronto (66). Prostate cancer 
incidence was associated with long term UFP exposure in a case-control study from Montreal 

(OR: 1.10 [95% CI: 1.01, 1.19]) (67).  

In studies of sub-clinical outcomes and biomarkers, some found positive associations between 

accumulation mode particles and immune responses (68), blood glucose (69) and other diabetes 
biomarkers (70), but not with insulin sensitivity (71), inflammation biomarkers (72) or 
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metabolic syndrome (73). Others found associations with worsened lung function in children 

that became non-significant after co-pollutant adjustment (74).  

Seven studies examined the effects of long-term UFP exposure on neuro-cognitive outcomes, 

some in children and some in elderly people. In children, studies found an association between 

outdoor and indoor UFP in schools and impaired cognitive development, measured repeatedly 

in children in Barcelona, Spain (75,76), and an association between address-level UFP and 
altered volume of several brain structures in children in Rotterdam, Netherlands (77). In elderly 

people, a US cohort study with 5646 participants found no associations between residential 

UFP and cognitive decline (78), while three German studies based on a cohort of ~600  elderly 

people and accumulation mode particles found significant associations cognitive decline and 
brain structure (79), with functional connectivity in the brain (80), but not with measures of the 

default mode network in the brain (81).  

Lastly, five studies examined perinatal health. Preterm birth was positively associated with 

third trimester centrally monitored UFP exposure among 24,001 singleton live births in 
Beijing, China (82), and with mothers’ address at birth in a case-control study with 442,314 

cases in California (83). Low birthweight (84,85) or pre-eclampsia (86) were not significantly 

associated with UFP.     

3.4 Mortality 

Only two studies examined the association between long-term UFP exposure and mortality. 

First, >100,000 women from the California Teachers Study Cohort were followed in 2001-

2007, and address-level UFP exposure was modelled. Ischemic heart disease mortality was 
significantly associated with UFP mass (HR: 1.10 [95% CI: 1.02, 1.18]), while cardiovascular 

mortality was only associated with specific UFP constituents, and no associations were found 

for all-cause and respiratory mortality. The authors did not assess the independence of UFP 

from PM2.5 or NO2 effects (87). Second, a Dutch national cohort followed 10.8 million adults 
above 30 years of age in 2013-2019. Address-level UFP was significantly associated with all-

cause mortality (HR: 1.01 [95% CI: 1.01, 1.02]), respiratory mortality (HR: 1.02 [95% CI: 

1.01, 1.03]), lung cancer mortality (HR: 1.04 [95% CI: 1.03, 1.05]), and CVD mortality (HR: 

1.01 [95% CI: 1.00, 1.01]), of which associations for all-cause and lung cancer mortality were 
robust to co-pollutant adjustment (88). 

3.5  Summary 

We found 40 studies on long-term exposure to UFP and morbidity and two on mortality. There 

was a positive association with diabetes incidence in all available studies, but with only four 
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studies in total, they were still too few. Similarly, more evidence is needed on total 

cardiovascular diseases, which were significantly associated with long-term UFP in one out of 
two studies. Stroke, heart failure and myocardial infarction incidence were also significantly 

associated with long-term UFP in the available studies, but more evidence is needed. Among 

the very few studies on respiratory outcomes, the only significant associations were found for 

prenatal UFP exposure and asthma incidence in children. The few studies on cancer point at 
possible associations with childhood, prostate and brain tumor incidence. Similarly, for 

cognitive outcomes, studies were limited, but found adverse effects of long-term UFP on 

cognitive development in children and cognitive decline in elderly people. Positive associations 

were also found between UFP exposure during pregnancy and preterm birth. Lastly, only two 
studies examined mortality, with inconsistent findings. Uncertainty remains regarding whether 

the health effects of UFP are independent from those of other pollutants with similar sources. 

This uncertainty arises because not all studies apply two-pollutant models, and in some studies, 

effects attenuate or become non-significant after adjustment. 

4. Health effects of airport-related exposure 
This chapter summarizes the health effects of UFP related to airport emissions. First, we briefly 
describe exposure patterns in and around airports, followed by a summary of studies on the 

health effects among airport employees, in experimental settings, and among residents living 

close to airports. Relevant studies were identified through searches in PubMed, with no 

restriction of publication date, using the following search terms: “ultrafine particles”/”particle 
number concentration”; “health”/”mortality”/”morbidity”; “airport”/”aviation”. 

4.1 Air quality around airports 

It is well documented that commercial airport activity adversely affects air quality in and 
around airports. Jet engine emissions from ascending and descending aircraft, the major source 

of airport-related air pollution, contain large amounts of volatile organic compounds and 

particulate matter, especially of the smallest particle size fraction in the ultrafine range below 

20 nm in diameter (89). Pollution emitted from aircraft activities has been found to be equally 
carcinogenic and with similar adverse health effects as diesel particle emissions (90). This 

causes health concerns for the exposed airport personnel, but also for residents in airport 

vicinity. Elevated UFP concentrations have been measured at distances as far as 18 km 

downwind from airports (91), affecting a potentially large number of people.  

A substantial number of studies on fixed-site or mobile UFP measurements in and around 

commercial airports are available from Europe and the US. Those focusing on residential areas 
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close to airports reported elevated UFP concentrations, such as around the major airports in 

Los Angeles (91–94), Amsterdam (95), London (96), Zurich (97), and Boston (98). 
Specifically, UFP concentrations are elevated under the landing approach path (93), and 

depend on distance to the airport (99), wind direction (95,100), and flight activity (98,99,101).  

Some studies evaluated the relative contributions from airport and road traffic emissions to 

total UFP concentrations, with some finding similar contributions (100,102,103) and some 
finding higher contributions from airports compared to traffic (92,96).  

In Copenhagen, UFP concentrations measured at the apron of Copenhagen Airport were 

reported to be two to three times higher than those measured at a high-traffic street in the city 

center (H.C. Andersens Boulevard) in 2012 (104). Another Danish study equipped members 
of different occupational groups at Copenhagen Airport with mobile monitoring instruments 

and assessed their UFP exposure, finding seven times higher average concentrations for 

baggage handlers compared to employees mainly working indoors (105). Another recent study 

combined mobile monitoring by a Google Street View car with modelling approaches to 
estimate UFP concentrations for all streets in Copenhagen, Frederiksberg and Tårnby 

municipalities (106). The resulting exposure map shows clearly elevated UFP concentrations 

in the residential areas bordering the airport to the west and north, with higher concentrations 
than in other residential areas in the city.   

4.2 Short-term exposure 

Short-term studies evaluate whether the exposure to airport-related UFP can trigger health 

effects or lead to changes in biomarkers of cardiovascular or respiratory health over a course 
of hours or days. We identified three studies that conducted quasi-experimental studies with 

healthy or asthmatic volunteers walking (107) or cycling (108,109) in both clean and airport 

air, taking repeated measurements of biomarkers.  

First, in a study around Los Angeles International Airport (LAX), 22 adults with asthma each 
walked twice, for two hours each time, in public parks inside and outside of a zone impacted 

by airport-related UFP. Repeated measurements of cardiopulmonary markers showed 

associations between airport-related UFP and increased systemic inflammation (107). 

Second, at Schiphol Airport close to Amsterdam, 21 healthy volunteers were recruited to cycle 
for five hours each at two to five visits, both in air polluted with airport-related UFP and clean 

air. Repeated measurements of cardiopulmonary markers showed associations between airport-

related UFP and decreased lung function (mainly forced vital capacity [FVC]) and a prolonged 

corrected QT interval (a cardiovascular marker) (109). 
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Third, in the same setup with 21 healthy volunteers as in (109), changes in cellular pathway 

activity were measured in urine. The urinary metabolome was significantly changed after 
exposure to airport-related UFP, indicating a heightened antioxidant response and altered nitric 

oxide synthesis (108).   

The studies on short-term exposure to airport-related UFP around Schiphol Airport are 

summarized in a comprehensive report (110). Here, the authors present results of another study 
on 191 primary school children living close to the airport, who were found to experience more 

respiratory complaints (shortness of breath and wheezing) and use more medication on days 

with high exposures. Further sub-studies, additional to the studies described above, found 

reduced lung function in children and healthy adults after short-term exposure to airport-related 
UFP, as well as short-term reductions in heart function in healthy adults (110). The authors 

emphasize that these effects might be stronger in people who already suffer from lung or heart 

conditions. Furthermore, they conclude that the health effects of UFP emitted at airports are 

not substantially different from those emitted by road traffic. 

4.3 Long-term exposure 

Population-based cohort studies of long-term exposure to airport-related UFP and associated 

health effects are scarce. The only available studies were conducted around Schiphol Airport 
(111), LAX (112,113), and in all of California (114).  

The Dutch studies were summarized in a report including findings on mortality, use of 

medication, perinatal health and self-reported health as outcomes. Airport-related UFP in 2003-

2019 was modelled for a large study population (number differing by sub-study, e.g. ~1.3 
million in mortality study) living in an area of 50x55 km around Schiphol Airport. 

Summarizing the different sub-studies, the authors conclude that there was no indication for 

associations between long-term exposure to airport-related UFP and general health. For 

respiratory diseases, adverse effects were only seen for people with pre-existing conditions, 
while there was suggestive evidence for an association between long-term exposure to airport-

related UFP and cardiovascular diseases (i.e., arrhythmia mortality, heart disease medication 

use, and self-reported heart disease and stroke). Further suggestive evidence was found for an 

association between long-term exposure to airport-related UFP and perinatal health (i.e. 
preterm birth, small for gestational age, and congenital anomalies). Evidence regarding the 

nervous and metabolic system was too inadequate for drawing conclusions (111). 

The studies around LAX focused on malignant brain cancer and meningioma (112), and 

preterm birth (113). The former study modelled airport-related UFP for 75,936 residents in an 
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area of 53x43 km around LAX from date of cohort entry (1993–1996) through the end of 2013. 

An IQR increase in long-term exposure to airport-related UFP was associated with a HR of 
1.12 (95% CI: 0.98, 1.27) with the incidence of malignant brain cancer, after adjusting for sex, 

race/ethnicity, education, and neighborhood socioeconomic status. No associations were found 

with meningioma. In the latter study, airport-related UFP exposure was modelled for 174,186 

women, who gave birth between 2008 and 2016, living within 15 km from LAX. Using birth 
records and adjusting for maternal demographic characteristics, exposure to traffic-related air 

pollution, and airport-related noise, the authors found a significant association between in utero 

exposure to airport-related UFP and preterm birth (OR: 1.04 [95% CI: 1.02, 1.06]). 

One study used modelled airport-related UFP exposure for the whole state of California and 
included 370,723 singletons born in selected hospitals in California between 2001 and 2014. 

Airport-related UFP exposure was assigned to the mothers’ address during pregnancy, and 

children were followed up for the first five years of their life. An IQR increase in in utero 

airport-related PM0.1 exposure was associated with autism spectrum disorder diagnosis with a 
HR of 1.02 (95% CI: 1.01, 1.03), adjusting for birth year, medical center, maternal age, 

maternal ethnicity, maternal education, parity, history of comorbidity, income at age one, 

season of conception, pre-pregnancy diabetes mellitus, pre-pregnancy obesity, and child’s sex 
(114). 

4.4 Summary  

Studies have shown that short-term exposure to airport-related UFP can have adverse effects 

on biomarkers related to cardiovascular and respiratory health, such as lung and heart function, 
and changes in cellular pathway activity. These effects were found in healthy adults, but are 

likely stronger among people with pre-existing diseases. Moreover, children living close to 

airports experienced more respiratory complaints on days with high exposures. Long-term 

studies of cohorts linked to address-level airport-related UFP exposure are very few, but studies 
found possible associations with cardiovascular diseases, respiratory diseases among people 

with pre-existing conditions, malignant brain cancer, autism spectrum disorder and perinatal 

health with only preterm birth found in more than one long-term study. 

5. Interpretation and conclusions 
This report summarizes the current evidence on health effects of UFP, specifically of short-

term exposure, long-term exposure, and airport-related exposure.  

Most available studies focus on short-term exposure, examining whether elevated UFP 

concentrations can trigger mortality or hospital admissions in the course of a few days. These 
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studies mostly use daily data from urban background monitoring stations and time series of 

mortality or hospital admissions within a study area around these stations. In addition, 
numerous studies measure biomarkers and sub-clinical outcomes related to short-term UFP 

exposure, but a summary of those was beyond the scope of this review. The study designs vary 

widely, including different measurement instruments and particle size assessments, as well as 

variations in the evaluation of lagged exposures. Consequently, the available evidence is not 
conclusive, and results from different studies are not necessarily comparable. Summarizing all 

studies, the most convincing associations were found for short-term UFP and hospital 

admissions and mortality due to respiratory diseases, and hospital admissions for myocardial 

infarction, although documentation of independence from other pollutants has been limited.   

Studies on long-term exposure have been emerging increasingly in the last few years, as more 

and more spatiotemporal models of address-level UFP are being developed. Most of these 

studies focus on disease incidence and sub-clinical outcomes, and only two on mortality. 

Associations are generally higher and more significant than for short-term exposure studies. 
While the overall number of studies is still too small to draw final conclusions, we found most 

consistent associations for stroke, heart failure and myocardial infarction incidence, some types 

of cancer incidence, cognitive outcomes in children and elderly people, and preterm birth. 

Airport-related UFP raises health concerns for airport workers and residents in airport vicinity. 

Short-term exposure to airport-related UFP has been shown to affect biomarkers related to 

cardiovascular and respiratory health, such as lung and heart function, and changes in cellular 

pathway activity, especially among people with pre-existing diseases. The strongest 
associations of long-term exposure to airport-related UFP were found with cardiovascular 

diseases, respiratory diseases among people with pre-existing conditions, and malignant brain 

cancer. 

Exposure assessment remains the most challenging aspect of UFP studies. Short-term studies 
commonly rely on single monitoring stations for exposure assessment of a whole city. While 

it has been shown that the daily variations at a single station may adequately reflect variations 

at other citywide locations, this may be different and should be tested in each individual study 

area. Crucially, this approach ignores the large spatial variation in UFP concentrations, with 
hotspots in micro-environments on fine spatial scales. The resulting exposure misclassification 

may lead to a bias towards the null, which might explain the non-significant or small 

associations detected in many studies. Similarly, the modelling of residential UFP 

concentrations for long-term studies is challenging due to the large spatial variation of UFP. 
While some UFP models reach good prediction performance, they may not adequately reflect 
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all types of exposure environments. External validation studies are needed to test models in 

heterogeneous locations, such as different traffic intensities and residential/urban background 
areas. 

Lastly, the available studies are restricted to few geographical locations, with most from Europe 

and North America. More studies are needed from more diverse locations and settings. 

To conclude, we know well from toxicology studies that UFP can harm the body and induce 
physiological changes related to cardiovascular and respiratory diseases. The body of literature 

from epidemiological studies on UFP’s health effects, related to both short- and long-term 

exposure, is growing and pointing at adverse effects on mortality and morbidity related to 

cardiovascular diseases, respiratory diseases, preterm birth, cancer, and cognitive outcomes. 
These might be even stronger among children or people with pre-existing conditions. There is 

also a need for studies on UFP and infectious respiratory diseases. Additionally, elevated 

exposure to UFP in airport vicinity raise health concerns that need to be studied further. In 

conclusion, epidemiological evidence on UFP health effects is fast growing but is still limited, 
due to a lack of data, monitoring programs and regulation of UFP. However, available evidence 

on UFP and health points to serious adverse effects on respiratory and cardiovascular systems, 

as well as on birth outcomes, metabolic, cognitive diseases and cancer, that suggest need of 
regulation of UFP and actions for their reduction, in addition to already regulated pollutants. 

However, more studies are needed on UFP and all major non-communicable diseases, 

especially those that can separate UFP’s health effects from those of other pollutants, both 

larger particles and traffic-related gasses. This demands more investments in monitoring of 
UFP and research on their health effects.  
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